If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+50x=225
We move all terms to the left:
16x^2+50x-(225)=0
a = 16; b = 50; c = -225;
Δ = b2-4ac
Δ = 502-4·16·(-225)
Δ = 16900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16900}=130$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-130}{2*16}=\frac{-180}{32} =-5+5/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+130}{2*16}=\frac{80}{32} =2+1/2 $
| a÷10.5=5.75 | | 64-12*2+6+3=x | | 5p+4=60 | | (7x+4)-(2x-3)=26 | | u/6-1=6 | | 5x/2+40=500 | | X+12=(6x÷2) | | -93=-30-3x | | (180/x)(200/x)=180 | | 8(7d+3)=17 | | X+12=6x÷2 | | k/8=3/11 | | -17=37+3x | | 1.6=m×4 | | -8x-16=-80 | | 17=(1.8)x+32 | | 6=2-2x+10= | | 9x+9=9×10^2 | | 8/9b-22=-26 | | 2x-9=18+x | | 27=40x | | -9(7x-8)=-31+3x | | -2(6-5y)=32 | | (2x+51)+(5x+3)=180 | | a/2-6=-4 | | 4/30=22/x | | x/3+2x=1/4 | | 6x=3^{3x-6} | | -5x+9=-2x+3 | | X+.03x=4.03 | | x+27=81 | | 1=x-4/4 |